
Informatics in Education, 2020, Vol. 19, No. 1, 113–128
© 2020 Vilnius University
DOI: 10.15388/infedu.2020.06

113

A Model for Developing Computational
Thinking Skills

Tauno PALTS, Margus PEDASTE
University of Tartu, Tartu, Estonia
e-mail: tauno.palts@ut.ee, margus.pedaste@ut.ee

Received: April 2019

Abstract. Computer science concepts have an important part in other subjects and thinking com-
putationally is being recognized as an important skill for everyone, which leads to the increas-
ing interest in developing computational thinking (CT) as early as at the comprehensive school
level. Therefore, research is needed to have a common understanding of CT skills and develop a
model to describe the dimensions of CT. Through a systematic literature review, using the EBSCO
Discovery Service and the ACM Digital Library search, this paper presents an overview of the
dimensions of CT defined in scientific papers. A model for developing CT skills in three stages is
proposed: i) defining the problem, ii) solving the problem, and iii) analyzing the solution. Those
three stages consist of ten CT skills: problem formulation, abstraction, problem reformulation,
decomposition, data collection and analysis, algorithmic design, parallelization and iteration, au-
tomation, generalization, and evaluation.

Keywords: Computer science, STEM, problem solving, K-12, computational thinking.

1. Introduction

The 21st century has changed the type of skills, knowledge, and competences that are
needed for success in the modern society. The reflection on computational thinking
(CT) started from thinking about the way computer scientists think, but in the modern
world it does not only involve computer scientists but has become a fundamental skill
for everyone needing to find their way in the world of technology and solve problems
effectively. Wing (2006) states that next to reading, writing, and arithmetic, CT should
be added to everyone’s analytical ability. Seymour Papert (1996) suggested a goal of
introducing computational thinking by using a computer to solve problems in a way
that allows people better to analyze and explain the problems, solutions and connec-
tions between them.

T. Palts, M. Pedaste114

1.1. Definitions and Dimensions of CT

Thinking computationally includes various aspects, which could be taught already at
the comprehensive school level. In 2006 Wing defined CT as “the thought processes
involved in formulating problems and their solutions so that the solutions are repre-
sented in a form that can be carried out by an information-processing agent”. In that
definition the information-processing agent is viewed as be a computer, a machine or
just a human being. This definition is commonly referred to as a way to approach CT
as a tool for solving problems using algorithms. The definition lacks more specific
information about the dimensions of skills and aspects of developing CT, even though
it still provides a frame of reference by depicting CT as a part of problem solving,
including data representation, algorithmic thinking and a skill that can be developed
either by using or not using technology. Qualls et al. (2011) connect the definition of
CT even more directly to computer science, stating that it is using logic skills with
computer science core concepts to solve problems. Grover and Pea (2013) describe
CT as applying computer science tools and techniques for understanding natural and
artificial processes and systems. Many other authors define CT as a skill, which is es-
sential for programmers and computer scientists. For example, Anderson (2016) looks
at CT as the way computer scientists think while approaching to solve the problems.
Gouws et al. (2016) describe CT as a concept that extracts the thought processes in-
volved in thinking like a computer scientist from concrete computer science practices
and provides a more generalized understanding of how computer scientists approach
problems.

In many cases, CT is mainly seen as an approach to solve problems. Soleimani et al.
(2016) also suggest that CT is about planning and designing systems by using concepts
of computer science. Getter and Yadav (2016) describe the CT including the concepts
fundamental to computer science, along with the skills needed for abstraction. decom-
position, pattern recognition and algorithmic thinking.

Selby and Woollard (2013) have extended Wing’s viewpoint by describing a five-
dimensional model of CT skills being a thought process that reflects the ability to
think:

In abstractions, in order to understand the problem. ●
In terms of decomposition, to divide the problem into smaller solvable problems. ●
Algorithmically, to find the step by step solution for the problem. ●
In terms of evaluations, to evaluate the effectiveness of the solution. ●
In generalizations to be able to generalize the solution for wider range of prob- ●
lems.

Lee et al. (2011) emphasize that recognizing patterns as one core concept of CT
defining CT as a set of thinking patterns. Roxcoe et al. (2014) view CT as a problem-
solving technique that is a fundamental life skill.

CT skills have been recognized by computer science teaching organizations as part
of the skillset that needs to be developed at various school levels. ISTE and CSTA
(2011) offer a list of characteristics for describing CT that include formulating prob-

A Model for Developing Computational Thinking Skills 115

lems, organizing and analyzing data, using abstractions, automating solutions using
algorithmic thinking with efficiency and generalizing solution for solving wide range
of problems.

Large companies, like BBC and Google, have started programs to help develop chil-
dren’s CT skills. Google’s CT course (2016) emphasizes manipulating data and con-
fidence trait in the definition of CT. In this definition, CT is viewed as a process that
includes logically ordering and analyzing data and creating solutions using algorithms,
and dispositions to solve complex and open-ended problems.

CT is also claimed to be mainly a cognitive problem-solving process/ability, which
can be developed in many ways, not only through computer programming (Chang et al.,
2017). CT is a skill that all everyone must learn to be effective at the workplace and to
be ready for using the digital world (Vallance and Towndrow, 2016). Denning (2017)
agrees that CT has evolved from being just the way that computer scientists think, to
being useful in most other fields.

CT has been a topic of research for several years, with the specific aspects investi-
gated including various age groups as well as tools for developing and instruments for
measuring CT. As many authors have published various ways of defining and approach-
ing CT, this leads us to the problem that not much attention has been dedicated to find-
ing a common understanding of the dimensions of CT skills that would help us focus on
developing and accessing CT skills.

1.2. Problem

CT has been described in several articles and reports, but these are not in line with each
other and there is indeed missing a common understanding of the dimensions that should
be in the focus while developing or assessing CT skills. There are several lists of CT
skills describing CT, but no integrated model based on a common understanding of CT
dimensions that can be used for developing CT skills.

In this study, using a systematic literature review method, we focus on finding a com-
mon understanding of the dimensions of CT skills that should be developed.

More specifically, two research questions were formulated:
Which dimensions of CT skills can be identified in articles on developing CT?(1)
How can these dimensions from different articles be combined into a new theo-(2)
retical model for developing CT?

2. Method

In order to identify the definitions and dimensions of CT and make a model for devel-
oping CT skills, a systematic literature review was conducted using the search engines
EBSCO Discovery Service and the ACM Digital Library. The search was used to filter
out the articles that included the search term “computational thinking” in the abstract.

T. Palts, M. Pedaste116

2.1. Search Procedure

The search procedure started with specifying the search criteria to retrieve relevant aca-
demic articles (see Fig. 1). The search criteria set in the EBSCO Discovery Service
search engine was as follows: (1) search term “computational thinking” in the abstract;
(2) full text available; (3) peer reviewed, and (4) in English. As the ACM Digital Library
search engine has slightly different search options, the following search criteria were set
in the ACM Digital Library search engine: (1) search term “computational thinking” in
the abstract, and (2) full text available.

The search was carried out on 1 January 2018 and returned 541 matches, includ-
ing 228 in the ACM Digital Library and 313 in the EBSCO Discovery Service search
results.

The next step was to filter out duplicate results (13), only 1–3 pages long texts (127)
and those not written in the context of computer science education (32). Then, articles
that did not include a clear list of CT skills (313) were excluded. Eventually, 9 articles
were added based on references in selected articles. In total, 65 articles were included in
qualitative analysis (see Fig. 1).

Fig. 1. Stages of systematic CT literature analysis.

A Model for Developing Computational Thinking Skills 117

2.2. Data Analysis

Three steps of the systematic article review process for the 65 selected articles are as
follows.

Firstly, in order to get an overview of the dimensions and CT skills described in the
articles, an analytic framework was created, which included a reference name, model
number and type, definition and dimensions of CT.

Secondly, a graph was formed based on the model type and number to reveal system-
atic descendancy of the CT models used in the articles (see Fig. 2). On this graph, main
original articles that were mainly referred to, were highlighted and scientific articles
with similar CT dimensions were connected with arrows.

Thirdly, as a result, a comparative analysis of the data from the 65 articles was con-
ducted. The dimensions of CT skills were sequenced, and the descriptions of the dimen-
sions by various authors the terms were combined in a table and later in a new model for
developing CT skills. Finally, the model and the core concepts were described.

3. Findings and Discussion

Findings and discussion include sections about identifying the directions of CT, new
model for developing CT skills and an example of using the new model.

3.1. Identifying the Directions of CT

In analyzing the 65 articles found in the study it appeared that they are often based on
each other. Therefore, we started to categorize them based on the theoretical framework,
definition and dimensions of CT used in each article. In addition, the year of publication
was taken into account to characterize the descendancy of the articles. The results of this
analysis of the content of the articles are presented on Fig. 2. Fig. 2 shows a graph of
articles and the descendancy based on the six clusters of CT dimensions (framed in large
boxes) that can be identified, originating from the following authors: Wing (2011), Barr
and Stephenson (2011), CSTA and ISTE (2011), Brennan and Resnick (2012), Selby and
Woollard (2013), and Moreno-León (2015).

The modern era of developing CT skills started with the article by Wing, describing
CT as a fundamental skill for not only for computer scientists, but for everyone. The au-
thor analyzed the questions we might ask to solve an algorithmic problem by evaluating
the difficulty and best solution for it. Wing emphasizes that the difficulty of the problem
accounts for the power of the computing device (computer, machine or a human being)
that will run the solution.

The first cluster of articles, deriving from Wing (2006), highlights the following
characteristics of CT to be considered: abstraction, problem decomposition, problem
reformulation, automation, and systematic testing.

T. Palts, M. Pedaste118

Fi

g.
 2

.
G

ra
ph

 s
ho

w
in

g
th

e
re

la
tio

ns
hi

ps
 o

f
th

e
ar

tic
le

s
fo

un
d

in
 th

e
sy

st
em

at
ic

 li
te

ra
tu

re
 s

ea
rc

h.
 G

ra
y

sh
ad

in
g

in
di

ca
te

s
th

e
ye

ar
 o

f
pu

bl
is

hi
ng

; t
he

 a
rr

ow
s

sh
ow

 h
ow

 p
re

vi
ou

sl
y

pu
bl

is
he

d
ar

tic
le

s
ha

ve
 b

ee
n

us
ed

 a
s

th
e

th
eo

re
tic

al
 ra

tio
na

le
 fo

r t
he

 n
ew

 a
rti

cl
es

; t
he

 b
lu

e
fo

nt
 o

f t
he

 re
fe

re
nc

es
 w

ith
 a

 su
rr

ou
nd

in
g

sq
ua

re
 in

di
ca

te
s k

ey
 a

rti
cl

es
 th

at
 h

av
e

be
en

 fu
rth

er
 u

se
d

in
 th

e
sy

nt
he

si
s o

f t
he

 c
ur

re
nt

 s
tu

dy
.

Le
e

et
 a

l.,

20
11

Q
ua

lls
 e

t
al

.,
20

11

Ba
rc

el
os

&
Si

lv
ei

ra
,

20
12

 (4
)

L’
H

eu
re

ux
et

 a
l.,

 2
01

2
W

er
ne

r
et

 a
l.,

20
12

G
ou

w
s

et
 a

l.,

20
13

Se
it

er
 &

Fo

re
m

an
,

20
13

Le
e

et
 a

l.,
20

14
M

an
ni

la
et

 a
l.,

20

14
Ro

sc
oe

 e
t

al
.,

20
14

Fr
on

za
et

 a
l.,

20

15

Ro
de

et
 a

l.,

20
15

Se
lb

y,

20
15

To
ed

te
&

A

yd
en

iz
,

20
15

V
oo

gt
et

 a
l.,

20

15
Cs

iz
m

ad
ia

et
 a

l.,

20
15

Ka
le

lio
gl

u
et

 a
l.,

20

16

A
ng

el
i

et
 a

l.,

20
16

Re
pe

nn
in

g
&

Ba

sa
w

ap
at

na
,

20
16

D
ag

ie
ne

&

Se
nt

an
ce

,
20

16

A
nd

er
so

n,
20

16

A
tm

at
zi

do
u

&

D
em

et
ri

ad
is

,
20

16
D

as
gu

pt
a

&
 P

ur
ze

r,

20
16

M
or

en
o-

Le
ón

et

 a
l.,

20
16

M
un

oz
 e

t
al

.,
20

16
So

le
im

an
i

et
 a

l.,

20
16

Bo
rg

es
et

 a
l.,

 2
01

7
Ch

an
g

et
 a

l.,

20
17

Ch
en

 e
t

al
.,

20
17

M
or

en
o-

Le
ón

et
 a

l.,
 2

01
7

(2
)

M
or

en
o-

Le
ón

et

 a
l.,

 2
01

7
(1

)
Ro

bl
es

 e
t

al
.,

20
17

D
ag

ie
ne

&

Se
nt

an
ce

,
20

17

Co
st

a
et

 a
l.,

20

17

Ch
ia

zz
es

e
et

 a
l.,

20

17

W
ei

nt
ro

p,

20
16

Br
ac

km
an

n
et

 a
l.,

 2
01

7
D

au
ng

ch
ar

on
e,

20

17

D
en

ni
ng

,
20

17

D
un

ca
n

et
 a

l.,

20
17

Fo
w

le
r,

20
17

Fr
on

za
et

 a
l.,

20

17

G
on

za
le

s
et

 a
l.,

20

17

M
ar

ce
lin

o
et

 a
l.,

 2
01

7

Ko
rk

m
az

et
 a

l.,
 2

01
7

Pe
lla

s
&

V

os
in

ak
is

,
20

17

D
ur

ak
&

Sa

ri
te

pe
ci

,
20

17

Ro
dr

ig
ue

z
et

 a
l.,

20

17

M
ou

za
 e

t
al

.,
20

17

Lo
w

e
&

Br

op
hy

,
20

17

Ro
w

e
&

Cu

nn
in

gh
am

,
20

17
Ro

se
 e

t
al

.,
20

17

Sh
ut

e
et

 a
l.,

20

17

Ly
e

&
 K

oh
,

20
14

Zh
on

g
et

 a
l.,

20

16

V
al

la
nc

e
&

To

w
nd

ro
w

,
20

16

W
in

g,

20
06

 &
 2

01
0

(1
)

G
ro

ve
r

&
Pe

a,
 2

01
3

(6
)

CS
TA

 &
 IS

TE
, 2

01
1

(3
)

Ba
rr

 &
 S

te
ph

en
so

n,

20
11

 (2
)

Br
en

na
n

&
 R

es
ni

ck
,

20
12

 (4
)

Se
lb

y
&

W
oo

lla
rd

, 2
01

3
(5

)

G
oo

gl
e,

 2
01

6

M
or

en
o-

Le
ón

et
 a

l.,
 2

01
5

(6
)

N
ie

m
el

ä
et

 a
l.,

20

17

Fi
g.

 2
. G

ra
ph

 sh
ow

in
g

th
e

re
la

tio
ns

hi
ps

 o
f t

he
 a

rti
cl

es
 fo

un
d

in
 th

e
sy

st
em

at
ic

 li
te

ra
tu

re
 se

ar
ch

. G
ra

y
sh

ad
in

g
in

di
ca

te
s t

he
 y

ea
r o

f p
ub

lis
h-

in
g;

 th
e

ar
ro

w
s s

ho
w

 h
ow

 p
re

vi
ou

sl
y

pu
bl

is
he

d
ar

tic
le

s h
av

e
be

en
 u

se
d

as
 th

e
th

eo
re

tic
al

 ra
tio

na
le

 fo
r t

he
 n

ew
 a

rti
cl

es
; t

he
 b

lu
e

fo
nt

 o
f t

he

re
fe

re
nc

es
 w

ith
 a

 su
rr

ou
nd

in
g

sq
ua

re
 in

di
ca

te
s k

ey
 a

rti
cl

es
 th

at
 h

av
e

be
en

 fu
rth

er
 u

se
d

in
 th

e
sy

nt
he

si
s o

f t
he

 c
ur

re
nt

 st
ud

y.

A Model for Developing Computational Thinking Skills 119

Wing’s viewpoint laid a foundation for a new wave of articles about the dimensions
of CT skills. As seen on the Fig. 2, of all the selected articles, twenty-one present modi-
fications of Wing’s theory of characterizing CT.

The second cluster, deriving from Wing, started in 2011 when Barr and Stephenson
(2011) created a comparison of CT concepts and capabilities in computer science, math-
ematics, science, language arts and social studies. Nine new common core CT concepts
included three concepts of data manipulation: data collection, analysis and represen-
tation, and six problem solving concepts: decomposition, abstraction, algorithms and
procedures, automation, parallelization, and simulation. The main difference compared
to Wing’s ideas was a greater focus on data manipulation and algorithms. In addition,
parallelization and simulation were added as separate concepts of CT. This resulted in
another wave of articles that use these dimension as a starting point for CT concepts
(Gouws et al., 2013, Soleimani et al., 2016, Atmatzidou and Demetriadis 2016, Costa
et al., 2016 and Rose et al., 2016).

The third cluster, deriving from Wing, appeared in 2011 when CSTA and ISTE
(2011) used Wing’s ideas to develop a list of six concepts for describing CT: formulating
problems, organizing and analyzing data, abstractions, automation through algorithmic
thinking, evaluation for efficiency and correctness, and generalizing. As we can see,
the main focus of CT is considered as solving problems using algorithms. The main
difference from Barr and Stephenson (2011) is that evaluation for efficiency and correct-
ness and generalizing have been added as dimensions of CT. As international computer
science teacher organizations have much influence on international teaching, several
articles have used these concepts (Denning, 2017, Fronza et al., 2015, Rode et al., 2015,
Kalelioglu et al., 2016, Chen et al., 2017, Pellas and Vosinakis, 2017, Korkmaz et al.,
2017, Durak and Saritepeci, 2017 and Lowe and Brophy, 2017).

The fourth cluster, deriving from Wing, emerged in 2011 when Brennan and
Resnick (2012) described four practices to assess CT projects: abstracting and modular-
izing, reusing and remixing, being incremental and iterative, and testing and debugging.
As Brennan and Resnick support the usage of Scratch as a tool for creating projects to
develop CT, the focus is on project analysis. This type of analysis highlighted the new
dimensions of iteration and reuse to be used in coding project analysis in several articles
(Lye et al., 2014, Vallance and Towndrow, 2016, Zhong et al., 2016, Fronza et al., 2017
and Román-González, 2017).

The fifth cluster, deriving from Barr and Stephenson (2011) and CSTA and ISTE
(2011), was formed by the ideas of Selby and Woollard (2013) who identified in the
literature the terms mostly associated with CT. They proposed a definition of CT, which
includes the following terms: abstractions, decomposition, algorithmic thinking, gener-
alization, and evaluation. Compared to Barr and Stephenson (2011), mostly data manip-
ulation terms were left out for being either too broad, not-well defined or not considered
a skill. Generalization and evaluation were added from CSTA and ISTE and those skills
of CT have been used later by several authors (Anderson, 2016, Selby, 2015, Csizmadia
et al., 2015, Angeli et al., 2016, Dagienė and Sentence, 2016, Marcelino et al., 2016,
Duncan et al., 2017 and Dagienė et al., 2017). As some of the dimensions of CSTA and
ISTE (2011) are common with Selby and Woollard (2013), several authors have con-

T. Palts, M. Pedaste120

sidered both ideas (Seiter and Foreman, 2013, Dasgupta and Purzer, 2016 and Mouza
et al., 2017).

The sixth cluster, deriving from Brennan and Resnick (2012), is based on connecting
CT dimensions with automatic project analysis. In automatic assessment of Scratch proj-
ects, Moreno-León (2015) assesses the following CT aspects: abstraction in creating
functions and clones, parallelism in starting several processes at the same time, logic in
using logical operations, synchronization in sending messages, flow control in creating
reasonable loops, user interactivity in using interaction, and data representation in using
variables and lists in programs.

The main difference is that this approach has opened up algorithmic thinking as
a demonstration of usage of parallelism, synchronization, logical thinking, and flow
control. Furthermore, data manipulation has been emphasized by data representation
and user interactivity. Although this categorization is influenced by automatic code
assessment, it can be used in a number of block-based coding environments. Several
authors have published articles analyzing only code used in educational programming
environment (Chang et al., 2017, Munoz et al., 2016, Moreno-León et al., 2016, Rob-Rob-
les et al., 2017, Moreno-León et al., 2017a. Brackmann et al. 2017 and Moreno-León
et al., 2017b).

As the graph (see Fig. 2) shows, six main clusters of the dimensions of CT skills can
be identified based on the various articles. Each cluster originates from certain authors,
which leads us to the idea that, in order to form a unified model for developing CT skills,
a collection of the CT skills from the original authors should be made.

Most of the articles have a common understanding of defining CT through the think-
ing process involved in solving algorithmic problems. Core concepts of CT are often
described starting with defining the problem and ending with testing and evaluation.
Solving problems is a cyclic process as solutions can be further on developed in the sec-
ond cycle in the terms of practicality and efficiency. This leads to the idea of creating a
model for developing CT skills in a cyclic manner including core concepts of CT divided
into three main problem solving stages.

3.2. New Model for Developing CT Skills

Based on the six original articles describing the main skill clusters, CT skills can be
grouped in three larger stages: defining the problem, solving the problem, and analyzing
the solution (Table 1).

Comparison of these six models of CT skills gives us an opportunity to create a new
model. This new model for developing CT skills (see Fig. 3) covers all of the main di-
mensions extracted from the articles in a three-staged problem-solving cycle, relying on
CT as a way to solve problems algorithmically.

The stage of defining the problem includes all CT skills that are needed before start-
ing to solve the problem. Firstly, from the Wing’s (2006) definition of CT, problem
solving starts with formulating the problem. Although several authors do not include it
as a separate dimension, all of the articles describe it as part of the algorithmic problem-

A Model for Developing Computational Thinking Skills 121

Ta
bl

e
1

C
at

eg
or

ie
s o

f C
T

sk
ill

s f
ro

m
 si

x
or

ig
in

al
 a

rti
cl

es

W
in

g,
 2

00
6

[1
]

B
ar

r,
20

11
 [1

8]
C

ST
A

 a
nd

 IS
T

E
, 2

01
1

[1
2]

B
re

nn
an

 a
nd

R

es
ni

ck
,

20
12

 [1
9]

Se
lb

y
an

d
W

oo
lla

rd
,

20
13

 [9
]

M
or

en
o-

L
eó

n

et
 a

l.,

20
15

 [2
0]

D
efi

ni
ng

 th
e

pr
ob

le
m

Pr
ob

le
m

fo

rm
ul

at
io

n
Pr

ob
le

m

fo
rm

ul
at

io
n

-
Fo

rm
ul

at
in

g
pr

ob
le

m
s

-
-

-

A
bs

tr
ac

tio
n

A
bs

tra
ct

io
n

A
bs

tra
ct

io
n

A
bs

tra
ct

io
ns

A
bs

tra
ct

in
g

an
d

m
od

ul
ar

iz
in

g
A

bs
tra

ct
io

n
A

bs
tra

ct
io

n

Pr
ob

le
m

re

fo
rm

ul
at

io
n

Pr
ob

le
m

re

fo
rm

ul
at

io
n

-
-

-
-

-

D
ec

om
po

si
tio

n
Pr

ob
le

m

de
co

m
po

si
tio

n
Pr

ob
le

m
 d

ec
om

po
si

tio
n

-
-

D
ec

om
po

si
tio

n
Pr

ob
le

m

de
co

m
po

si
tio

n

So
lv

in
g

th
e

pr
ob

le
m

D
at

a
co

lle
ct

io
n

an
d

an
al

ys
is

-
D

at
a

co
lle

ct
io

n,
da

ta
 a

na
ly

si
s,

da
ta

 re
pr

es
en

ta
tio

n,

si
m

ul
at

io
n

O
rg

an
iz

in
g

an
d

an
al

yz
in

g
da

ta
,

R
eu

si
ng

 a
nd

re

m
ix

in
g

-
U

se
r i

nt
er

ac
tiv

ity
,

da
ta

 re
pr

es
en

ta
tio

n

A
lg

or
ith

m
ic

 d
es

ig
n,

pa

ra
lle

liz
at

io
n

an
d

ite
ra

tio
n,

au

to
m

at
io

n

A
ut

om
at

io
n

A
ut

om
at

io
n,

 a
lg

or
ith

m
s

an
d

pr
oc

ed
ur

es
,

pa
ra

lle
liz

at
io

n

A
lg

or
ith

m
ic

 th
in

ki
ng

,
au

to
m

at
in

g
so

lu
tio

ns
B

ei
ng

in

cr
em

en
ta

l a
nd

ite

ra
tiv

e

A
lg

or
ith

m
ic

de

si
gn

Pa
ra

lle
lis

m
,

lo
gi

ca
l t

hi
nk

in
g,

sy

nc
hr

on
iz

at
io

n,

flo
w

 c
on

tro
l

A
na

ly
zi

ng

th
e

so
lu

tio
n

G
en

er
al

iz
at

io
n

-
-

G
en

er
al

iz
in

g
-

G
en

er
al

iz
at

io
n

-

Te
st

in
g

an
d

ev
al

ua
tio

n
Sy

st
em

at
ic

te

st
in

g
-

Id
en

tif
yi

ng
, a

na
ly

zi
ng

, a
nd

im

pl
em

en
tin

g
so

lu
tio

ns
Te

st
in

g
an

d
de

bu
gg

in
g

Ev
al

ua
tio

n
-

T. Palts, M. Pedaste122

solving process. As CT is a thought process used in solving problems according to al-
gorithms, it is essential to understand and research the problem that needs to be solved.
Secondly, all of the models include abstraction. When a problem is formulated, it is im-
portant to identify and extract relevant information to define the main idea(s). This stage
includes modelling the core aspects of complex problems or systems. Therefore, the
abstraction stage includes modularizing. Thirdly, problem reformulation can be used
to reframe a problem into a solvable and familiar one. The fourth skill is decomposition
of the problem. Usually, decomposing has been listed as the second dimension after the
abstraction but, as two dimensions have been added, this step of breaking the problem
down into manageable units now follows problem formulation.

The second stage of the model is solving the problem. This stage includes all CT
skills involved in creating the solution for the problem. The precondition of solving the
problem algorithmically is collecting and analyzing data. Another CT skill, algorith-
mic design (a series of ordered steps), is also a main core skill of CT. Algorithmic design
is followed by the use of parallelization and iteration, which eventually leads to the
automation of the process.

After completing the three stages, the problem can be formulated again for improving
the solution. For example, the user may not always be near the plant to water it or
watering can be too labour-intensive for the owner. Would it be possible to add a water
pump to improve the system? Can the design be more pleasing for the eye? Improving
the solution can lead to actual working solutions (see Fig. 3).
When the prototype has passed through all three CT stages (see Fig. 3), the system can
be improved in a cyclic manner after evaluation by formulating the problem again. The
next step could be adding a watering system to the project. This means that the
completed stages are followed again by three stages of CT skills until the user is
satisfied with the result.

4. Conclusion

In this study, a new model for developing CT skills was designed based on an analysis
of articles found through the EBSCO Discovery Search and the ACM Digital Library.
Based on 65 articles, the study grouped the definitions and dimensions of CT in six

Fig. 3. A model for developing CT skills with illustrations from the project of
measuring plant soil humidity.

Defining the problem
•Problem formulation
•Abstraction
•Problem reformulation
•Decomposition

Solving the problem
•Data collection and analysis
•Algorithmic design
•Parallelization and iteration
•Automation

Analyzing the
solution
•Generalization
•Testing and

evaluation

Fig. 3. A model for developing CT skills with illustrations
from the project of measuring plant soil humidity.

A Model for Developing Computational Thinking Skills 123

The third stage of CT skills is analyzing the solution. This includes generalization,
which means transferring this problem-solving process to a wider range of problems.
And the final CT skill is evaluation and testing, which means analyzing (assessing and
recognizing) the processes and the outcomes in terms of efficiency and resource utiliza-
tion. This also includes systematic testing and debugging, efficiency and performance
constraints, error detection, etc.

When all of the CT stages have been completed, the solution can be improved after
the evaluation and testing by formulating the problem again. This means repeating the
three-staged application of CT skills until the user is satisfied with the result.

3.3. Example of Using the New Model for Developing CT Skills

Based on the six original articles describing the main skill clusters, CT skills can be
grouped in three larger stages: defining the problem, solving the problem, and analyzing
the solution (Table 1).

Comparison of these six models of CT skills gives us an opportunity to create a new
model. This new model for developing CT skills (see Fig. 3) covers all of the main di-
mensions extracted from the articles in a three-staged problem-solving cycle, relying on
CT as a way to solve problems algorithmically.

In order to get a better understanding of the new model for developing CT skills, this
section provides an example of each step of the process, using a plant watering project
as an illustration. Plants tend to lose vitality as a result of both excessive and insufficient
watering (see Fig. 3). This example project is about solving the problem of watering the
plants at home correctly.

In this case, an example of formulating the problem is: How to create a system that
reminds us when to water the plant? For that we need to research the problem.

As an example of abstraction, we need to know if the plant needs watering. For
that we need data on soil moisture (attribute for actual humidity as a percentage) and
the minimum percentage of moisture needed by the specific plant (attribute for needed
humidity as a percentage). Extra data is needed for turning on and off the alarm (at-
tribute for alarm state as true or false). In addition to that we need code for measur-
ing the soil humidity (method measure humidity) and code for turning the alarm on
(methods turn alarm on) and off (method turn off the alarm). After the abstraction of
understanding the problem, we need to decompose the problem into smaller solvable
problems. Which tools can be used to measure humidity and set up an alarm? Which
algorithms can turn the alarm on and off at certain humidity levels? An example of
decomposing the plant watering system into solvable parts can be connecting the input
(humidity sensor) and output (alarm) to the computer to read the humidity percentages
and creating a program for reading the values of humidity and for turning on and off
the alarm according to the humidity level. When the planning (see Fig. 3) is over, the
second stage starts.

The second stage is solving the problem, which means creating suitable hardware
and software solutions. For example, Arduino can be used to put together a device for

T. Palts, M. Pedaste124

measuring soil humidity (see Fig. 3). The next step would be to create the algorithm for
measuring humidity and turning on the alarm when humidity is too low or too high.

This algorithm for humidity regulation can be used for a wide range of plants by just
adjusting the variables for the minimum and maximum level of humidity that a specific
plant needs. As humidity is measured, an if-else loop needs to be created with an algo-
rithm that automatically turns on and off the alarm based on soil humidity.

The third stage is analyzing the solution. The CT skill of generalizing means that
applicability of the solution can be expanded to measuring room humidity, temperature,
light, etc. The skill of evaluating and testing the solution includes evaluation of the
required frequency of taking humidity readings, the process of alarm transmission to
notify the user and the accuracy of measurements and performance of the system.

After completing the three stages, the problem can be formulated again for improv-
ing the solution. For example, the user may not always be near the plant to water it or
watering can be too labour-intensive for the owner. Would it be possible to add a water
pump to improve the system? Can the design be more pleasing for the eye? Improving
the solution can lead to actual working solutions (see Fig. 3).

When the prototype has passed through all three CT stages (see Fig. 3), the system
can be improved in a cyclic manner after evaluation by formulating the problem again.
The next step could be adding a watering system to the project. This means that the
completed stages are followed again by three stages of CT skills until the user is satis-
fied with the result.

4. Conclusion

In this study, a new model for developing CT skills was designed based on an analysis
of articles found through the EBSCO Discovery Search and the ACM Digital Library.
Based on 65 articles, the study grouped the definitions and dimensions of CT in six clus-
ters. The dimensions of CT from the six clusters were categorized into three sequenced
stages in a new model. Usable in various subjects, the model includes the following
stages:

Defining the problem, which includes formulating the problem, abstraction, prob- ●
lem reformulation and decomposition.
Solving the problem, which includes data collection and analysis, algorithmic de- ●
sign, parallelization and iteration and automation.
Analyzing the solution, which includes generalization, testing and evaluation. ●

The new model also explains the stages and skills of CT with examples from project-
based learning. The main new aspects of this model are that it can be used in a problem-
solving process from start to finish by completing the sequential stages. Previous models
have not listed CT skills in the order of occurrence in such a cyclic manner, with three
major problem-solving stages following each other and each stage including CT skills
that are developed at that stage. This model can be used by the teachers and students to
develop various project ideas and instructional activities.

A Model for Developing Computational Thinking Skills 125

The limits of this model are that it is based only on the search term “computational
thinking” and on the articles found by two search engines. The model does not include
articles that do not present specific lists of CT skills. Furthermore, the identified clusters
are based on a referring system and can change in the future, with new articles getting
more references. Some aspects (for example abstraction) can occur in other dimensions,
but the main occurrences are considered in the model.

Further research is needed to develop scenarios for training and assessing the devel-
opment of CT skills at various school levels. Creation of tools for evaluating CT skills
could give us more information about the relationships between the elements of the
model. The model for developing CT skills is designed in such a way that it could be
used in various subjects and at different school levels for developing CT skills.

The new model for developing CT skills is a theoretical one and we suggest creating
scenarios of learning CT to test parts of it empirically in the future. When the prototype
has passed through all three CT stages (see Fig. 3), the system can be improved after
evaluation by formulating the problem again. For example, the next step could be add-
ing a watering system to the project. This means that the completed stages are followed
again by three stages of CT skills until the user is satisfied with the result.

References

Anderson, N. D. (2016). A call for computational thinking in undergraduate psychology. Psychology Learning
& Teaching, 15(3), 226–234.

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., Zagami, J. (2016). A K-6 computational
thinking curriculum framework: Implications for teacher knowledge. Journal of Educational Technology
& Society, 19(3), 47.

Atmatzidou, S., Demetriadis, S. (2016). Advancing students’ computational thinking skills through educa-
tional robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems, 75,
661–670.

Barcelos, T. S., Silveira, I. F. (2012, October). Teaching computational thinking in initial series an analysis
of the confluence among mathematics and computer sciences in elementary education and its implications
for higher education. In Informatica (CLEI), 2012 XXXVIII Conferencia Latinoamericana En (pp. 1–8).
IEEE.

Barr, V., Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what is the
role of the computer science education community? Acm Inroads, 2(1), 48–54.

Borges, K. S., de Menezes, C. S., da Cruz Fagundes, L. (2017, October). The use of computational thinking in
digital fabrication projects a case study from the cognitive perspective. In 2017 IEEE Frontiers in Educa-
tion Conference (FIE) (pp. 1–6). IEEE.

Brackmann, C. P., Román-González, M., Robles, G., Moreno-León, J., Casali, A., Barone, D. (2017, Novem-
ber). Development of Computational Thinking Skills through Unplugged Activities in Primary School. In
Proceedings of the 12th Workshop on Primary and Secondary Computing Education (pp. 65–72). ACM.

Brennan, K., Resnick, M. (2012, April). New frameworks for studying and assessing the development of
computational thinking. In Proceedings of the 2012 annual meeting of the American Educational Research
Association, Vancouver, Canada (pp. 1–25).

Chang, C. K., Tsai, Y. T., Chin, Y. L. (2017, July). A Visualization Tool to Support Analyzing and Evaluating
Scratch Projects. In 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)
(pp. 498–502). IEEE.

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., Eltoukhy, M. (2017). Assessing elementary students’
computational thinking in everyday reasoning and robotics programming. Computers & Education, 109,
162–175.

T. Palts, M. Pedaste126

Chiazzese, G., Fulantelli, G., Pipitone, V., Taibi, D. (2017, October). Promoting computational thinking and
creativeness in primary school children. In Proceedings of the 5th International Conference on Technologi-
cal Ecosystems for Enhancing Multiculturality (p. 6). ACM.

Costa, E. J. F., Campos, L. M. R. S., Guerrero, D. D. S. (2017, October). Computational thinking in mathemat-
ics education: A joint approach to encourage problem-solving ability. In 2017 IEEE Frontiers in Education
Conference (FIE) (pp. 1–8). IEEE.

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard, J. (2015). Computa-
tional thinking-A guide for teachers.

CSTA. Operational Definition of Computational Thinking. 2011; http://www.csta.acm.org/Curricu-
lum/sub/CurrFiles/CompThinkingFlyer.pdf

Dagienė, V., & Sentance, S. (2016, October). It’s computational thinking! Bebras tasks in the curriculum. In
International Conference on Informatics in Schools: Situation, Evolution, and Perspectives (pp. 28–39).
Springer, Cham.

Dagienė, V., Sentance, S., & Stupurienė, G. (2017). Developing a two-dimensional categorization system for
educational tasks in informatics. Informatica, 28(1), 23–44.

Dasgupta, A., Purzer, S. (2016, October). No patterns in pattern recognition: A systematic literature review. In
Frontiers in Education Conference (FIE), 2016 IEEE (pp. 1–3). IEEE.

Daungcharone, K. (2017, March). Enhancement the computational thinking skills via the simulation game. In
Digital Arts, Media and Technology (ICDAMT), International Conference on (pp. 195–199). IEEE.

Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of the ACM,
60(6), 33–39.

Duncan, C., Bell, T., Atlas, J. (2017, January). What Do the Teachers Think? Introducing Computational
Thinking in the Primary School Curriculum. In Proceedings of the Nineteenth Australasian Computing
Education Conference (pp. 65–74). ACM.

Fowler, A. (2017, August). Engaging young learners in making games: an exploratory study. In Proceedings of
the 12th International Conference on the Foundations of Digital Games (p. 65). ACM.

Durak, H. Y., Saritepeci, M. (2018). Analysis of the relation between computational thinking skills and various
variables with the structural equation model. Computers & Education, 116, 191–202.

Fronza, I., El Ioini, N., & Corral, L. (2015). Students want to create apps: leveraging computational thinking to
teach mobile software development. In Proceedings of the 16th annual conference on information technol-
ogy education (pp. 21–26). ACM.

Fronza, I., Ioini, N. E., Corral, L. (2017). Teaching computational thinking using agile software engineering
methods: a framework for middle schools. ACM Transactions on Computing Education (TOCE), 17(4),
19.

Google for Education. Exploring computational thinking. Retrieved December 13, 2016, from http://www.
google.com/edu/resources/programs/exploringcomputational-thinking/

Gouws, L., Bradshaw, K., Wentworth, P. (2013, October). First year student performance in a test for compu-
tational thinking. In Proceedings of the South African Institute for Computer Scientists and Information
Technologists Conference (pp. 271–277). ACM.

Gretter, S., Yadav, A. (2016). Computational thinking and media & information literacy: An integrated ap-
proach to teaching twenty-first century skills. TechTrends, 60(5), 510–516.

Grover, S., Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational
Researcher, 42(1), 38–43.

Kalelioglu, F., Gülbahar, Y., Kukul, V. (2016). A framework for computational thinking based on a systematic
research review. Baltic Journal of Modern Computing, 4(3), 583.

Korkmaz, Ö., Çakir, R., Özden, M. Y. (2017). A validity and reliability study of the Computational Thinking
Scales (CTS). Computers in Human Behavior, 72, 558–569.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., ... & Werner, L. (2011). Computational think-
ing for youth in practice. Acm Inroads, 2(1), 32–37.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., and Werner, L. (2011). Computational think-
ing for youth in practice. Acm Inroads, 2(1), 32–37.

Lee, T. Y., Mauriello, M. L., Ahn, J., Bederson, B. B. (2014). CTArcade: Computational thinking with games
in school age children. International Journal of Child-Computer Interaction, 2(1), 26–33.

L'Heureux, J., Boisvert, D., Cohen, R., Sanghera, K. (2012, October). IT problem solving: an implementation
of computational thinking in information technology. In Proceedings of the 13th annual conference on
Information technology education (pp. 183–188). ACM.

A Model for Developing Computational Thinking Skills 127

Lowe, T., Brophy, S. (2017). An operationalized model for defining computational thinking. In 2017 IEEE
Frontiers in Education Conference (FIE) (pp. 1–8). IEEE.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through pro-
gramming: What is next for K-12?. Computers in Human Behavior, 41.

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., Settle, A. (2014, June). Compu-
tational thinking in K-9 education. In Proceedings of the working group reports of the 2014 on innovation
& technology in computer science education conference (pp. 1–29). ACM.

Marcelino, M. J., Pessoa, T., Vieira, C., Salvador, T., Mendes, A. J. (2017). Learning Computational Thinking
and scratch at distance. Computers in Human Behavior.

Moreno-León, J., Robles, G., Román-González, M. (2015). Dr. Scratch: Automatic analysis of scratch projects
to assess and foster computational thinking. RED. Revista de Educación a Distancia, (46), 1–23.

Moreno-León, J., Robles, G., Román-González, M. (2016, April). Comparing computational thinking devel-
opment assessment scores with software complexity metrics. In Global Engineering Education Conference
(EDUCON), 2016 IEEE (pp. 1040–1045). IEEE.

Moreno-León, J., Robles, G., Román-González, M. (2017a). Towards Data-Driven Learning Paths to Develop
Computational Thinking with Scratch. IEEE Transactions on Emerging Topics in Computing.

Moreno-León, J., Román-González, M., Harteveld, C., Robles, G. (2017b). On the automatic assessment of
computational thinking skills: A comparison with human experts. In Proceedings of the 2017 CHI Confer-
ence Extended Abstracts on Human Factors in Computing Systems (pp. 2788–2795). ACM.

Mouza, C., Yang, H., Pan, Y. C., Ozden, S. Y., Pollock, L. (2017). Resetting educational technology course-
work for pre-service teachers: A computational thinking approach to the development of technological
pedagogical content knowledge (TPACK). Australasian Journal of Educational Technology, 33(3).

Munoz, R., Barcelos, T. S., Villarroel, R., Silveira, I. F. (2016, June). Game design workshop to develop
computational thinking skills in teenagers with Autism Spectrum Disorders. In Information Systems and
Technologies (CISTI), 2016 11th Iberian Conference on (pp. 1–4). IEEE.

Niemelä, P., Partanen, T., Harsu, M., Leppänen, L., Ihantola, P. (2017, November). Computational thinking
as an emergent learning trajectory of mathematics. In Proceedings of the 17th Koli Calling Conference on
Computing Education Research (pp. 70–79). ACM.

Papert, S. (1996). An exploration in the space of mathematics educations. International Journal of Computers
for Mathematical Learning, 1(1), 95–123.

Pellas, N., Vosinakis, S. (2017, April). How can a simulation game support the development of computational
problem-solving strategies? In Global Engineering Education Conference (EDUCON), 2017 IEEE (pp.
1129–1136). IEEE.

Qualls, J. A., Grant, M. M., Sherrell, L. B. (2011). CS1 students' understanding of computational thinking
concepts. Journal of Computing Sciences in Colleges, 26(5), 62–71.

Repenning, A., Basawapatna, A., Escherle, N. (2016, September). Computational thinking tools. In Visual
Languages and Human-Centric Computing (VL/HCC), 2016 IEEE Symposium on (pp. 218–222). IEEE.

Robles, G., Moreno-León, J., Aivaloglou, E., Hermans, F. (2017, February). Software clones in Scratch proj-
ects: On the presence of copy-and-paste in Computational Thinking learning. In Software Clones (IWSC),
2017 IEEE 11th International Workshop on (pp. 1–7). IEEE.

Rode, J. A., Weibert, A., Marshall, A., Aal, K., von Rekowski, T., El Mimouni, H., Booker, J. (2015, Septem-
ber). From computational thinking to computational making. In Proceedings of the 2015 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing (pp. 239–250). ACM.

Rodriguez, B., Kennicutt, S., Rader, C., Camp, T. (2017, March). Assessing Computational Thinking in CS
Unplugged Activities. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Sci-
ence Education (pp. 501–506). ACM.

Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities un-
derlie computational thinking? Criterion validity of the Computational Thinking Test. Computers in Hu-
man Behavior, 72, 678–691.

Roscoe, J. F., Fearn, S., & Posey, E. (2014, October). Teaching computational thinking by playing games and
building robots. In 2014 International Conference on Interactive Technologies and Games (pp. 9–12).
IEEE.

Roscoe, J. F., Fearn, S., Posey, E. (2014, October). Teaching computational thinking by playing games and
building robots. In Interactive Technologies and Games (iTAG), 2014 International Conference on (pp.
9–12). IEEE.

Rose, S., Habgood, J., Jay, T. (2017). An exploration of the role of visual programming tools in the develop-
ment of young children’s computational thinking. Electronic journal of e-learning, 15(4), 297–309.

T. Palts, M. Pedaste128

Rowe, E., Asbell-Clarke, J., Gasca, S., Cunningham, K. (2017, August). Assessing implicit computational
thinking in zoombinis gameplay. In Proceedings of the 12th International Conference on the Foundations
of Digital Games (p. 45). ACM.

Seiter, L., Foreman, B. (2013, August). Modeling the learning progressions of computational thinking of pri-
mary grade students. In Proceedings of the ninth annual international ACM conference on International
computing education research (pp. 59–66). ACM.

Selby, C. (2015). Relationships: computational thinking, pedagogy of programming, and Bloom's Taxonomy.
In Proceedings of the Workshop in Primary and Secondary Computing Education (pp. 80–87). ACM.

Selby, C., Woollard, J. (2013). Computational thinking: the developing definition.
Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research

Review, 22, 142–158.
Soleimani, A., Green, K. E., Herro, D., Walker, I. D. (2016, June). A Tangible, Story-Construction Process

Employing Spatial, Computational-Thinking. In Proceedings of the The 15th International Conference on
Interaction Design and Children (pp. 157–166). ACM.

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-dimensional integrated assessment for
computational thinking. Journal of Educational Computing Research, 53(4), 562–590.

Toedte, R. J., Aydeniz, M. (2015). Computational thinking and impacts on K-12 science education. In Frontiers
in Education Conference (FIE), 2015 IEEE (pp. 1–7). IEEE.

Vallance, M., and Towndrow, P. A. (2016). Pedagogic transformation, student-directed design and computa-
tional thinking. Pedagogies: An International Journal, 11(3), 218–234.

Werner, L., Denner, J., Campe, S., Kawamoto, D. C. (2012, February). The fairy performance assessment:
measuring computational thinking in middle school. In Proceedings of the 43rd ACM technical symposium
on Computer Science Education (pp. 215–220). ACM.

Wing, J. (2011). Research notebook: Computational thinking—What and why. The Link Magazine, 20–23.
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., Wilensky, U. (2016). Defining compu-

tational thinking for mathematics and science classrooms. Journal of Science Education and Technology,
25(1), 127–147.

Voogt, J., Fisser, P., Good, J., Mishra, P., Yadav, A. (2015). Computational thinking in compulsory education:
Towards an agenda for research and practice. Education and Information Technologies, 20(4), 715–728.

T. Palts is an Assistant of Informatics Didactics at the Institute of Computer Science
of the University of Tartu and a PhD student in informatics. His primary research area
relates to teaching computational thinking and programming at a beginner’s level.

M. Pedaste is a Professor of Educational Technology at the Institute of Education of
the University of Tartu where he is leading the Centre for Educational Technology. His
research interests are in educational technology, science education, inquiry-based learn-
ing, technology-enhanced learning and instruction, learning analytics, and augmented
reality.

